1. 赚钱小项目 > 理财配资 >

排队论数学模型

【数学建模算法】(14)排队论:基本概念
【数学建模算法】(14)排队论:基本概念
提示:

【数学建模算法】(14)排队论:基本概念

排队是在日常生活中经常遇到的现象,如顾客到商店购买物品、病人到医院看病常常要排队。此时要求服务的数量超过服务机构(服务台、服务员等)的容量。也就是说,到达的顾客不能立即得到服务,因而出现了排队现象。这种现象不仅在个人日常生活中出现,电话局的占线问题,车站、码头等交通枢纽的车船堵塞和疏导,故障机器的停机待修,水库的存贮调节等都是有形或无形的排队现象。由于顾客到达和服务时间的随机性。可以说排队现象几乎是不可避免的。 排队论 又称**随机服务系统理论,就是为解决上述问题而发展的一门学科,它研究的内容主要有以下三部分: 下面将对排队论的基本知识进行介绍: 下图是排队论的一般模型: 图中虚线所包含的部分为排队系统。各个顾客从顾客源出发,随机地来到服务机构,按一定的排队规则等待服务,直到按一定的服务规则接受完服务后离开排队系统。 一般的排队过程都由 输入过程,排队规则,服务过程 三部分组成,现分述如下: 输入过程 是指顾客到来时间的规律性,可能有下列不同情况: 排队规则指到达排队系统的顾客按怎样的规则排队等待,可分为 损失制,等待制和混合制 三种。 举例:小张去银行取钱,发现前面一个顾客身边摆了4个麻袋的硬币要存钱,于是悻悻地换了一个窗口。 举例:小张去银行取钱,发现前面有一条队的人很少,于是赶紧挤上前去排队。 举例:小张发现柜台前面有一条排队等待线,排队队伍长度不能够超过这条线,于是换到了还没有达到排队限度的队伍里。 1.服务机构 单服务台 , 多服务台并联 (每个服务台同时为不同顾客服务); 多服务台串联 (多服务台依次为同一顾客服务); 混合制 。 2.服务规则 (1)先到先服务 (2)后到先服务 (3)随机服务,在队列中随机选人进行服务 (4)特殊优先服务,对病情危急的病人优先治疗。 :顾客到达流或顾客到达时间的分布。 :服务时间的分布。 :服务台数目。 :系统容量限制。 :顾客源数目。 :服务规则。(先到先服务FCFS,后到先服务LCFS) 1.平均队长 : 正在被服务和正在等待服务 的顾客数之和的数学期望。 2.平均排队长 :指系统内 等待服务 的顾客数的数学期望。 3.平均逗留时间 :顾客在系统内逗留时间(包括排队等待的时间和接受服务的时间)。 4.平均等待时间 :指一个顾客在排队系统中排队等待时间。 5.平均忙期 :指服务机构连续繁忙时间(顾客到达空闲服务机构起,到服务机构再次空闲止的时间)长度的数学期望。 还有由于顾客被拒绝而使企业受到损失的 损失率以及以后经常遇到的 服务强度等,这些都是很重要的指标。 计算这些指标的基础是表达系统状态的概率。所谓 系统的状态即指系统中顾客数,如果系统中有 n 个顾客就说系统的状态是 n ,它的可能值是: 1.队长没有限制时: 2.队长有限制,最大数为 时, 3.损失制,服务台个数是 时, 这些状态的概率一般是随时刻 而变化,所以在时刻 ,系统状态为 的概率用 表示。稳态时系统状态为 的概率用 表示。

【数学建模算法】(18)排队论:M/M/s等待制排队模型
提示:

【数学建模算法】(18)排队论:M/M/s等待制排队模型

单服务台等待制模型 是指:顾客的相机到达时间服从参数为 的负指数分布,服务台个数为1,服务时间 服从参数为 的负指数分布,系统空间无限,允许无限排队,这是一类最简单的排队系统。

记 为系统到达平衡状态后队长 的概率分布,则由(17)中关于指数分布的分析,并注意到 和 。记
并设 (否则队列将排至无限远),则:
所以:
其中
因此
上面两个公式废除了在平衡条件下系统中顾客数为 的概率。由上式可以看出, 是系统中至少有一个顾客的概率,也就是服务台处于忙的状态的概率,因此,因此也成 为服务强度,它反映了系统繁忙的程度。此外,上述式子的推导前提是 即要求顾客的平均到达率小于系统的平均服务率,才能使系统达到统计平衡。

已经得到概率分布,可以求得期望,期望即为平均队长:

平均排队长是:


关于顾客在系统中的逗留时间 ,可说明它服从参数为 的负指数分布,即
可直接得到平均逗留时间:
因此,顾客在系统中的逗留时间为等待时间 和接受服务时间 之和,即:
故由:
可得等待时间 为:

与平均逗留时间 具有关系:

同理,平均排队长 与平均等待时间 具有关系


上面两个公式称为Littile公式,是排队论中一个非常重要的公式。

在平衡状态下,忙期 和闲期 一般为随机变量,求取它们的分布是比较麻烦的。因此,我们来求一下平均忙期 和平均闲期 。由于忙期和闲期出现的概率分别为 和 ,所以在一段时间内可以认为忙期和闲期的总长度之比为 。又因为忙期和闲期是交替出现的,所以在充分长的时间里,它们出现的平均次数应是相同的。于是,忙期的平均长度 和闲期的平均长度 之比也应是 ,即

又因为在到达为 Poisson 流时,根据负指数分布的无记忆性和到达与服务相互独立的假设,容易证明从系统空闲时刻起到下一个顾客到达时刻止(即闲期)的时间间隔仍服从参数为 的负指数分布,且与到达时间间隔相互独立。因此,平均闲期应为 ,这样,便求得平均忙期为:

可发现,平均逗留时间 =平均忙期 。
从直观上看,顾客在系统中逗留的时间越长,服务员连续繁忙的时间也就越长。